4755

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section	on A		
1(i)	$\mathbf{BA} = \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ -4 & 14 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply c.a.o.
1(ii)	$\det \mathbf{BA} = (6 \times 14) - (-4 \times 0) = 84$	M1 A1	Attempt to calculate any determinant
	$3 \times 84 = 252$ square units	A1(ft) [3]	c.a.o. Correct area
2(i)	$\alpha^2 = (-3 + 4j)(-3 + 4j) = (-7 - 24j)$	M1	Attempt to multiply with use of $j^2 = -1$
		A1 [2]	c.a.o.
2(ii)	$ \alpha = 5$ $\arg \alpha = \pi - \arctan \frac{4}{3} = 2.21$ (2d.p.) (or 126.87°)	B1 B1	Accept 2.2 or 127°
	$\alpha = 5(\cos 2.21 + j\sin 2.21)$	B1(ft)	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^2 used throughout (ii)
3(i)	$3^{3} + 3^{2} - 7 \times 3 - 15 = 0$ $z^{3} + z^{2} - 7z - 15 = (z - 3)(z^{2} + 4z + 5)$	B1 M1 A1	Showing 3 satisfies the equation (may be implied) Valid attempt to factorise Correct quadratic factor
	$z = \frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm \mathrm{j}$	M1	Use of quadratic formula, or other valid method
	So other roots are $-2+j$ and $-2-j$	A1	One mark for both c.a.o.
3(ii)	$ \begin{array}{c c} \hline & X & 1 \\ \hline & X & 1 \\ \hline & -2 & 0 \\ & X & -1 \end{array} $ $ \begin{array}{c} X & 1 \\ \hline & 3 \\ \end{array} $ $ \begin{array}{c} P \in A \\ \end{array} $	[5] B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4755

4	$\sum_{r=1}^{n} \left[(r+1)(r-2) \right] = \sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - 2n$	M1	Attempt to split sum up
	$= \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) - 2n$	A2	Minus one each error
	$= \frac{1}{6} n \Big[(n+1)(2n+1) - 3(n+1) - 12 \Big]$	M1	Attempt to factorise
	$= \frac{1}{6}n(2n^2 + 3n + 1 - 3n - 3 - 12)$	M1	Collecting terms
	$=\frac{1}{6}n\left(2n^2-14\right)$		
	$=\frac{1}{3}n(n^2-7)$	A1 [6]	All correct
5(i)	p = -3, r = 7	B2	One mark for each s.c. B1 if b and d used instead of
5(ii)		[2]	p and r
	$q = \alpha\beta + \alpha\gamma + \beta\gamma$	B1	
	$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	Attempt to find q using $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha + \beta + \gamma$, but not $\alpha\beta\gamma$
	$= \left(\alpha + \beta + \gamma\right)^2 - 2q$		
	$\Rightarrow 13 = 3^2 - 2q$	۸.1	c.a.o.
	$\Rightarrow q = -2$	A1 [3]	
6(i)	$a_2 = 7 \times 7 - 3 = 46$	M1 A1	Use of inductive definition c.a.o.
	$a_3 = 7 \times 46 - 3 = 319$	[2]	
6(ii)			Correct was of north (i) (require
	When $n = 1$, $\frac{13 \times 7^0 + 1}{2} = 7$, so true for $n = 1$	B1	Correct use of part (i) (may be implied)
	Assume true for $n = k$ $13 \times 7^{k-1} + 1$	E1	Assuming true for k
	$a_k = \frac{13 \times 7 + 1}{2}$		
	$\Rightarrow a_{k+1} = 7 \times \frac{13 \times 7^{k-1} + 1}{2} - 3$	M1	Attempt to use $a_{k+1} = 7a_k - 3$
	-	1711	
	$=\frac{13\times7^k+7}{2}-3$		
	$=\frac{13\times7^k+7-6}{2}$		
	-	A1	Correct simplification
	$=\frac{13\times7^k+1}{2}$		
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is	E1	Dependent on A1 and previous E1
	true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1$, 2, 3 and so true for all positive integers.	E1 [6]	Dependent on B1 and previous
			Section A Total: 36

4755	

Section	on B		
7(i)	$(1, 0)$ and $(0, \frac{1}{18})$	B1	
	() () () ()	B1	
		[2]	
7 (ii)	2 - 3 - 3 - 0	B4	Minus 1 for each error
()	$x = 2$, $x = -3$, $x = \frac{-3}{2}$, $y = 0$	[4]	
7 (iii)	1 JA 1		
		D4	Correct approaches to vertical
		B1	asymptotes
	718	B1	Through clearly marked $(1, 0)$
	1		and $\left(0, \frac{1}{18}\right)$
		[2]	
	p ti t ti		
	x < -3, $x > 2$	B1	
7(iv)	,	B2	B1 for $\frac{-3}{2} < x < 1$, or $\frac{-3}{2} \le x \le 1$
	$\frac{-3}{2} < x \le 1$	DZ	
	2	[3]	
		В3	Circle, B1; radius 2, B1;
8(i)	In		centre 3j, B1
	71	В3	Half line, B1; from -1, B1;
	5-//		$\frac{\pi}{4}$ to x-axis, B1
		[6]	·
	3	B2(ft)	Correct region between their
8(ii)		DZ(II)	circle and half line indicated
			s.c. B1 for interior of circle
	-i Re	[2]	
		M1	Tangent from origin to circle
	Sketch should clearly show the radius and	A1(ft)	Correct point placed by eye
	centre of the circle and the starting point	/(10)	where tangent from origin meets
	and angle of the half-line.		circle
8(iii)		M1	Attempt to use right angled
	$\arg z = \frac{\pi}{2} - \arcsin \frac{2}{3} = 0.84$ (2d.p.)		triangle
	2	A1	c.a.o. Accept 48.20° (2d.p.)
		[A]	
		[4]	

4755

9(i)	(-3, -3)	B1	
9(ii)	(-3, -3) (x, x)	[1] B1 B1 [2]	
9(iii)	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	B3 [3]	Minus 1 each error to min of 0
9(iv)	Rotation through $\frac{\pi}{2}$ anticlockwise about the origin	B1 B1 [2]	Rotation and angle (accept 90°) Centre and sense
9(v)	$ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} $	M1 A1	Attempt to multiply using their T in correct order c.a.o.
		[2]	
9(vi)	$ \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ x \end{pmatrix} $	M1 A1(ft)	May be implied
	So (- <i>x</i> , <i>x</i>)		
	Line $y = -x$	A1	c.a.o. from correct matrix
		[3]	